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Argument from the Poverty of 
the Stimulus

• Children usually don’t hear sentences like “The cat 
that can eat food will drink milk” 

• But they still know the correct rule for such sentences 
(more on this later) 

• Since children face a ‘poverty’ of the stimulus of 
sentences with multiple auxiliaries, but learn the rule 
anyway, they must have an innate bias towards 
hierarchical rules



But, is it necessary?

• Some have questioned the need of a hierarchical bias 
to learn a hierarchical rule 

• What if the hierarchical rule can be inferred without 
bias from sequential data?



Some approaches
• Perfors, Tenenbaum, and Regier (2011) showed that a 

learner whose task is to choose between an innately 
available hierarchical representation and an innately 
available linear representation will choose the 
hierarchical one 

• Fitz and Chang (2017) studied the interaction between 
meaning and linguistic constraints, and concluded that 
no syntactic bias is required to learn the hierarchical 
rule 



Direct predecessors

• Lewis and Elman (2001) trained an RNN to predict 
the well formedness of questions, but these results 
were called into question 

• Frank and Mathis (2007) used RNNs to transform 
sentences into questions by creating a semantic 
representation of the declarative sentence and 
generating the question



Since then…

• We have had major improvements in RNNs, including 
the notion of seq2seq networks introduced by 
Botvinick and Plaut (2006) and Sutskever, Vinyals, 
and Le (2014) 

• Can these models do better?



The task

• The same task of question formation in English has 
been used as the prime example of hierarchical rules 
for grammars for a long time 

• We present the same task to our models as well



The task

• Given a declarative sentence, transform it to a question 

• The network is presented with both two tasks – 
identity and question 

• Identity is a cue to generate the same sentence again 

• Question is to transform the sentence into a question



The task

• Two different languages are used 

• No-agreement language: Auxiliaries are can, could, 
will, etc. 

• Agreement language: Auxiliaries are do, does, don’t, 
etc.



The task

• We wrote grammars for each language, and generated 
sentences using that grammar





Generating sentences

• Each grammar was a CFG, without recursion 

• The number of sentences we used is only a fraction of 
what the grammar can generate 

• We changed the vocabulary randomly, and sampled 
subsets of the vocabulary to generate sentences faster



Neural Networks: What? 

• Network of small computing units 

• Takes a vector of input values and produces one 
output vector 

• Learns based on the given examples and automatically 
infers distributions. 



Recurrent Neural Network

• Networks with loops in them, thus allowing 
information to persist 

• Hence with RNN’s we can preserve the context.



seq2seq Networks
• A RNN which converts sentences from one domain to 

another 

• An RNN encoding layer 

• We get the internal states for this sentence i.e. the context 

• A RNN decoding layer 

• Using Teacher Forcing we train the network to predict the 
next character given the previous characters



Implementation
1. Encode the input sentence to state vectors. 

2. Start with the target size of 1 i.e the Start of sentence token. 

3. Feed the state vectors and 1-word target sequence to the decoder 
to produce predictions for the next word. 

4. Sample the next word using  these predictions. 

5. Append the next word to the target sequence.  

6. Repeat steps 3-5 till you get the End of Sentence or you reach 
the max length of the sentence.



Gated Recurrent Unit
• It is a variation of an RNN 

• Does not suffer from the “Vanishing Gradient” problem of 
vanilla RNNs 

• Two gates – Update Gate and Reset Gate 

• Update gate: A vector which decides what information to 
pass to the next stage  

• Reset Gate: A vector which decides what information to 
forget 



GRU with Attention 

• Lots of information 

• The required information may be lost  

• Attention solves this problem  

• A vector which tells you which part of the 
information to focus on



Experiment

IDENT QUEST

RC on Subject Train, Test Generalisation

RC on Object Train, Test Train, Test

No RC Train, Test Train, Test



Experiment

• Randomly initialise hidden layers 

• Train on the training set 

• Measure accuracy on test and generalisation set



Experiment

No-agreement Agreement

Training 118k 117k

Test 9k 9k

Generalisation 10k 10k



Results



Test accuracy
• We evaluated each model, and measured the number 

of sentences that match exactly with the correct 
output

No-agreement

Model # Accuracy (%)

1 84.5

2 86.9

3 91.3

4 84.7

Agreement

Model # Accuracy

1 87.0

2 95.4

3 98.8

4 83.8



Test accuracy
• But, if we relax the constraint that the words have to 

match, to requiring that the POS matches, we see the 
accuracy improves

No-agreement

Model # Accuracy (%)

1 93.2

2 94.7

3 97.5

4 92.7

Agreement

Model # Accuracy

1 89.6

2 98.7

3 99.9

4 87.4



Generalisation accuracy
• We see that the model doesn’t perform very well on 

the generalisation tasks

No-agreement

Model # Word Match 
Accuracy

POS Match 
Accuracy

1 0.02 3.6

2 0.08 1.9

3 0 3.1

4 0.13 6.0

Agreement

Model # Word Match 
Accuracy

POS Match 
Accuracy

1 0.02 17.5

2 0 14.0

3 1.45 10.4

4 0 11.4



But that’s not all…

• The amount of data is pretty small 

• The generalisation set contains kinds of sentences that 
the model has never seen before 

• The model may have acquired grammatical structure 
even if it can’t reproduce the entire sentence correctly



• The real question is whether the model has learnt the 
hierarchical rule 

• To see how it does, we just need to know which 
auxiliary it moves to the front



Generalisation accuracy

No-agreement

Model # First Word 
Accuracy

1 1.8

2 1.6

3 0.7

4 3.3

Agreement

Model # First Word 
Accuracy

1 1.8

2 0.01

3 11.9

4 0.01



Generalisation accuracy

• We still note that our models don’t perform anywhere 
near as well as those of McCoy et. al.  

• In fact, we see that the model consistently learns the 
wrong rule by examining some of the predictions it 
makes



Examples
= Doesn’t her monkey who does live call the elephants? 
> Does her monkey who doesn’t call the elephants? 

= Does our elephant who doesn’t giggle impress our dogs? 
> Doesn’t our elephant who does giggle does impress our dogs? 

= Will the seal who can live impress her seals below her dogs? 
> Can the seal who will live will impress her seals? 

= Would your dogs that the yaks could read irritate the dogs? 
> Could your dogs that the dogs could would irritate the dogs?



Explanations
• There could be many reasons for the differences 

between out results and those of McCoy et al 

• We’re using a slightly different vocabulary, and 
generating sentences using a different mechanism 

• We did not hit upon good initialisations 

• Our model isn’t exactly the same as theirs (we don’t 
have their code, so we can’t tell)



Future Work



McCoy et. al.

• Test the final encoder states for different features 
using a linear classifier 

• This allows us to understand what the network is 
actually learning 

• Analyse errors in our model and compare with findings 
of Crain and Nakayama



…and beyond

• Try this on other, more complex, hierarchical tasks 

• Try this on real world, not generated data 

• Try this on other languages



Conclusions



Apparently not

• We were not able to get the same kind of accuracies 
that the original paper got 

• This could be due to a multitude of reasons, including 
sheer bad luck 

• Our models consistently seemed to learn the wrong 
rules, like moving the first auxiliary to the front



…but that’s not all

• McCoy et al found that only one architecture – GRU 
with attention – was able to perform well, but we 
didn’t observe that 

• Maybe there are some architectural improvements that 
will allow the model to perform better on the task



Questions?



Find our code, and more 
information at  

https://github.com/saujasv/hierarchical-rnn

https://github.com/saujasv/hierarchical-rnn

