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Rise of the Transformer
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But is it enough?

Transformers perform poorly in low or moderate resource settings.
Is there a way we can do better?

One possible avenue and the path we’ve taken is the addition of explicit
syntactic information. Tran et al. (2018) have already shown this helps
for RNNs. We explore whether it does the same for transformers.
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Addition of Explicit Syntactic Information

Currey and Heafield (2019) have explored the addition of constituency
parses to augment training data.

In addition to what they’ve done, we augment the training data with
dependency trees.

To analyse the results of this addition, we follow Raganato and
Tiedemann (2018) in using the attention heads in the encoder of the
Transformer to induce dependency trees. We then evaluate results on a
dependency parsing benchmark.
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Injection of syntax to Transformers

I Currey and Heafield (2019) incorporate constituency parses
I Omote et al. (2019) incorporate dependency information into the

positional encoding using pairwise relative depths instead of pairwise
relative positions.

I Strubell et al. (2018) introduce a modified self-attention mechanism,
linguistically-informed self-attention (LISA) that uses the
dependency structure of the source explicitly in the calculation of
self-attention.
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Incorporating Linearized Trees

I Wu et al. (2017) use linearized dependency trees in the same
manner we do.

I Aharoni and Goldberg (2017) and Currey and Heafield (2018) also
incorporate linearized constituency parses as explicit syntactic
information in a machine translation system.
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Linear Parses

We use a DFS to traverse the trees and linearize them.

Sentence Parse Type Parse

It is only natural! Dependency Parse (_ROOT natural (_nsubj It ) (_cop is ) (_advmod only ) (_punct ! ) ) )

Constituency Parse (ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB only) (JJ natural))) (. !)))

Table: Examples of linearized parses for constituency and dependency parses.
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Induced Trees

I View attention heads as matrices that represent the adjecency matrix
of a complete graph in which each word in the sentence is a vertex.

I Values in the matrix correspond to the strength of the connection
I Not enough to parse, but enough to examine the impact of syntactic

information from attention matrices.
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Data Processing

We use the Europarl corpus for the following language pairs.
1. English - Finnish
2. English -German

All the common sentences were collected and parsed using the Stanford
CoreNLP parser to obtain the dependency and the constituency trees.
The resulting data was then split in an 80 : 10 : 10 ratio for
train,validation and testing.

Data Set Number of Sentences
Train 374112
Valid 46772
Test 46853

Table: Dataset split
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Multi Task Setting

For the Multi Task setting we appended tags to both the the beginning
and the end of the sentence.

Token Target Task
<TR> Translate the sentence
<CP> Generate the constituency parse tree for the sentence
<DP> Generate the dependency parse tree for the sentence

Table: Target task in indicators in the multi-task setting
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Model Details

We used the OpenNMT(Klein et al. (2017)) implementation of the
transformer to both train and translate.

We used the same model and hyperparamenters as Vaswani et al. (2017)

For evaluation we used the Post (2018)’s implementation of the BLEU
metric
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Experiments

With the interest of studying the effects of incorporating syntax, we
carried out the following experiments for each language pair.
I Base model without any augmentation
I Incorporation of constituency parses on the source side
I Incorporation of dependency parses on the source side
I Incorporation of both constituency parses and dependency parses on

the source side
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English-German

Model Type CP DP BLEU Score
Base − − 28.41

Multi Task
+ − 0.71
+ + 0.61
− + 0.73

Mixed Encoder
+ − 0.66
+ + 0.75
− + 0.43

Table: BLEU Scores for English-German
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English-Finnish

Model Type CP DP BLEU Score
Base − − 18.60

Multi Task
+ − 18.34
+ + 17.52
− + 17.71

Mixed Encoder
+ − 8.72
+ + 8.10
− + 8.03

Table: BLEU Scores for English-Finnish
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Qualitative Analysis

The English-German models generates the same set of phrases multiple
times. One such phrase is given below.

Ich habe für diesen Bericht gestimmt, da ich der Ansicht bin,
dass die Europäische Union eine
Translation: I voted for this report because I believe that the European
Union is one

The English-Finnish models while performing much better than their
German counterparts are plauged by <unk> tokens, with it averaging
around 2 <unk> tokens per sentence.
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Possible Reasons?

I Injection ofsource syntax considered to be noise by the transformer
I Possible cases of overfitting
I Coverage issues
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Further Analysis

1. Translation performance against the complexity of the sentence
measured using proxy indicators such as the length of the sentence,
the depth of the constiuency parse trees and the depth of the
dependency parse trees

2. We also use dependency tree induction as as an analysis tool. We
use the encoder attention heads to induce trees for the training set
of the CoNLL 2017 Shared Task (Zeman et al., 2017), and compare
unlabelled attachment scores (UAS) across layers and attention
heads.
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Performance over Complexity

I Sentences of the same length , same depth in the parse trees were
grouped together.

I There is a degradation of performance with increasing length, and
depth of dependency or constituency tree

I No increase in performance on more complex (longer, or deeper)
sentences when we provide explicit syntactic information.
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Dependency Tree Induction

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Base 20.68 15.96 14.66 18.87 20.67 7.08
Base + CP 5.05 3.88 4.27 5.97 4.83 6.22
Base + CP + DP 14.64 5.08 5.22 11 7.66 7.07
Base + DP 15.63 14.84 13.13 5.06 5.59 15.57

(a) Best performing attention heads for English-German
Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Base 19.08 21.12 7.04 17.84 15.07 20
Base + CP 14.8 16.22 15.47 19.95 19.4 18.95
Base + CP + DP 17.73 13.67 20.31 8.62 16.07 14.5
Base + DP 14.14 17.94 14.9 19.97 17.47 7.37

(b) Best performing attention heads for English-Finnish

Table: UAS F1-scores on the dependency tree induction task on the CoNLL
2017 Shared Task English data.
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Conclusion

I We proposed two methods of augmenting the training data provided
to a Transformer
I Multi Task where the Transformer outputs translations as well as

linearized parse trees
I Mixed Encoder where the Transformer outputs translations from a

sentence or it’s parse tree
I We find that the addittion of syntax does not help in improving

performance
I Further analysis also shows that the addition of source syntax does

not improve the encoder representations learnt by the models.
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Conclusion
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Future Work

Seperation of decoders might help the model learn better.

Explore the use of gold parses as the explicit syntactic information
provided.
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