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Abstract

Transformer-based models have surpassed RNN-based neural machine translation models in terms of
performance. While they achieve high scores when trained on large amounts of training data, there is still
scope for improvement in their use in low- and moderate-resource settings. We propose incorporating
syntax information explicitly into the training process using dependency parse trees. We explore two
methods of augmenting the training data with parse trees, and report results on subsets of the Europarl
corpus. We also evaluate the self-attention matrices for syntactic representation by inducing dependency
trees from them. We find that in this training regime, the use of explicit syntactic information does not
improve the performance of the Transformer models in a low-resource setting. Our code is available at
https://github.com/saujasv/dependent-transformers.1

1 Introduction

Recent work in neural machine translation has been dominated by architectures based on the Trans-
former model (Vaswani et al., 2017). These models achieved state-of-the-art performance on the WMT
2014 English-to-German and English-to-French tasks, and outperformed RNN-based approaches to neural
machine translation.

While Transformers perform well when trained on large corpora (WMT 2014 English-to-German has
4.5M sentence pairs, and English-to-French has 36M sentence pairs), the application of Transofrmers to
low-resource and moderate-resource settings remains an area of active exploration.

One direction for improving performance in lower resource settings that has been explored is providing
transformers with explicit syntactic information. Previous work by Tran et al. (2018) comapring the
representations learned by Transformer models to those by recurrent models has shown that recurrent
models are better at capturing hierarchical information. This presents a stronger case for using explicit
syntactic information to enhance Transformer models.

Currey and Heafield (2019) are among the first to explore this line of work, using constituency parse
information to augment the training data provided to Transformer models. They propose two mechanisms
to supplement training data with syntactic information, which we adopt here. They find that while the
additional syntactic information prdocues mixed results in a high-resource setting, it allows models to
consistently outperform a non-syntactic baseline in low-resource settings.

Instead of constituency parse information, we explore the possibility of using dependency parse infor-
mation in the training data. We explore both forms of augmentation proposed by Currey and Heafield
(2019). To analyse the results of adding syntactic information to our training regime, we use one of the
techniques proposed by Raganato and Tiedemann (2018). We use the attention heads in the encoder of the
Transformer model to induce dependency trees, and evaluate results on a dependency parsing benchmark.

1Our data and trained models are available at http://tiny.cc/dep-transformer-files
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2 Related Work

There have been multiple approaches to incorporating syntax explicitly into Transfomer-based represen-
tations. One of them – by Currey and Heafield (2019) – is the inspiration for our work, and works with
constituency parse trees.

There are also works that explore using dependency trees as syntactic input to the Transformer model.
Omote et al. (2019) incorporate dependency information into the positional encoding using pairwise relative
depths instead of pairwise relative positions. Strubell et al. (2018) introduce a modified self-attention
mechanism – linguistically-informed self-attention (LISA) – that uses the dependency structure of the
source explicitly in the calculation of self-attention. They train their models in a multi-task setting, but
do not include machine translation as one of the tasks. Deguchi et al. (2019) extend LISA to machine
translation. Zhang et al. (2019) use hidden representations from a neural dependency parser as the input
to the encoder of an NMT model.

There has also been work on incorporating linearized parses as explicit syntactic information in RNN-
based NMT models. Wu et al. (2017) use linearized dependency trees in the same manner we do, but
also explore multiple ways of traversing the tree to linearize it. We use one of the schemes they propose
– the Child Enriched Structure. Aharoni and Goldberg (2017) and Currey and Heafield (2018) propose
incorporating linearized constituency parses as explicit syntactic information in a machine translation
system. These latter two approaches are also the ones that inform Currey and Heafield (2019).

3 Methods

3.1 Linearizing parses

We experiment with both constituency parse trees and dependency parse trees. We use the linearized con-
stituency parses produced by the Stanford CoreNLP package. These are depth-first traversals of the parse
tree, and we tokenize the phrase label associated with a phrase with the opening parentheses associated
with the phrase.

We linearize dependency parses also as a depth-first tree traversal, and tokenize the opening parenthesis
of each subtree with the dependency label that joins the governor to that subtree.

Sentence Parse Type Parse

It is only natural!
Dependency Parse ( ROOT natural ( nsubj It ) ( cop is ) ( advmod only ) ( punct ! ) ) )

Constituency Parse (ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB only) (JJ natural))) (. !)))

Table 1: Examples of linearized parses for constituency and dependency parses.

3.2 Multi-task

The first method of presenting additional syntactic information is to train the model as a multi-task model,
where one task is to translate the sentence, and the other is to parse it. However, unlike some multi-
task approaches (Subramanian et al., 2018) to improving source-side representations in encoder-decoder
architectures, we do not use a different decoder. The same encoder and decoder modules are trained to
perform both tasks. Each sentence is presented as <TAG> Sentence <TAG>, where <TAG> specifies the
task. We expect that the encoder learns to better represent the hierarchical structure of a sentence during
encoding, and the decoder learns to exploit the hierarchical structure of the sentence during translation.
During training, the model is presented with the same sentence twice – once with the task of translation,
and once with the task of parsing.
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Figure 1: The multi-task training pipeline

3.3 Mixed encoder

The second method we use to introduce syntactic information is to present only one kind of target data
(as opposed to the multi-task setting, where the target may be the translation, or a linearized parse) and
vary only the source sequence. In the mixed encoder setting, the model is presented with either a sentence,
or its linearized parse tree, and tasked with determining the translation. During training, the model is
presented with the same sentence twice – once as the sentence itslef, and once as the parse tree – and the
target sequence in both cases is the translation. In this setting, we expect the encoder to learn hierarchical
representations better since it is presented with both linear and hierarchical information.

3.4 Dependency tree induction

To examine the changes brought about by introducing more syntactic information being provided, we
examine the attention heads for representation of syntax. To do this, we use the method adopted by
Raganato and Tiedemann (2018), which is using the attention heads to induce dependency trees.

We can view attention heads as matrices that represent the adjecency matrix of a complete graph
in which each word in the sentence is a vertex. The values in the matrix represent the strength of the
connection. Raganato and Tiedemann (2018) propose constructing dependency trees as maximum spanning
trees of the graph. The Chu-Liu-Edmonds (i Chu and Liu, 1965; Edmonds, 1967) algorithm is used to
obtain the spanning tree.

While far from sufficient for parsing, this allows us to examine the syntactic relations that the attention
matrices capture, and the impact of syntactic information on the attention matrices.
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Figure 2: The mixed encoder training pipeline

4 Experiments

4.1 Data

We carried out experiments for the following language pairs

• English - Finnish

• English - German

The data for these were sourced from the Europarl corpus (Koehn, 2005). These languages are strongly
agglutenative and we believe that these languages will benifit the most from introducing the dependency
relations. We also chose representatives of different language families, Finnish being Uralic, and German
being Indo-European.

From the corpus, we collected the sentences at the intersection of all the language pairs. Repeated
sentneces were purned from the dataset to prevent data contamination i.e the leaking of the train data
samples to test and valid sets. The sentences were then parsed with Stanford CoreNLP parser and the
resulting dependency trees and constituency parse tree were extracted. Sentences with embedded quotes
(around 15k in number) were removed from the dataset resulting in 467737 sentence pairs for each lan-
guage. The data was then split it into train, development, and test in roughly an 80:10:10 ratio resulting
in the following numbers.

Split Number of Sentences

Train 374112
Valid 46772
Test 46853

Table 2: Dataset split

For the multi task setting, tokens were appended to both the beginning and the end of the sentences
to indicate the target tasks i.e what kind of output was to be generated.
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Token Target Task

<TR> Translate the sentence
<CP> Generate the constituency parse tree for the sentence
<DP> Generate the dependency parse tree for the sentence

Table 3: Target task in indicators in the multi-task setting

4.2 Model

We used Klein et al. (2017)’s OpenNMT implementation of the transformer to train all our models. We
stuck to the same hyperparamters as that of Vaswani et al. (2017). As stated earlier there are two major
types of experiments.

• Multi Task

• Mixed Encoder

For each of these two types we carreied out experiments for all combinations of presence and abscense of
our features namely constituency parse trees and dependency parse trees, resulting in three models per
experiment.

For generating the translations we used the same Klein et al. (2017) OpenNMT framework, and stuck
to the same hyperparameters as that of Vaswani et al. (2017). A slight modification was done to the testing
corpus on the source side for multi task encoders. The token <TR> was appended to the start and end of
all sentences to make the model predict the translations instead of the parse trees.

5 Results and Discussion

We evalauted the translations using Post (2018)’s implementation of Papineni et al. (2002)’s BLEU metric.
From tables 4a and 4b, we can see that the base models without any source syntax injections outperform
all the other models by a huge margin. The addition of syntax seems to have catostiphically affected the
translation quality.

Qualitatively observing the data, we see that the same kind of sentences seems to be repeated multiple
times. Phrases such as

Ich habe für diesen Bericht gestimmt, da ich der Ansicht bin, dass die Europäische Union eine.

Translation: I voted for this report because I believe that the European Union is one.

occurs very often in the predictions. The Finnish side was frequently plauged by <unk> tokens causing
poor BLEU scores.

We also observe that multi-task models perform much better in comparison to mixed-encoder models.
And of course, as stated earlier they are all vastly inferior to the base models. The addition of syntax to
the source side seems to have appeared as noise to the transformer, and the fact that multi-task models
outperform mixed-encoder models certainly helps in making a case for this. There seems to be overfitting
and a coverage issue with respect to the English-German pair whereas in the Finnish case, there seems to
have the opposite effect with the predictions averaging two <unk> tokens per sentence.

5.1 Analysis

We further proceed to analyse the performance on two fronts.
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Model Type CP DP BLEU Score

Base − − 28.42

Multi Task
+ − 0.72
+ + 0.61
− + 0.73

Mixed Encoder
+ - 0.67
+ + 0.75
- + 0.43

(a) English-German

Model Type CP DP BLEU Score

Base − − 18.61

Multi Task
+ − 18.34
+ + 17.53
− + 17.71

Mixed Encoder
+ − 8.72
+ + 8.11
− + 8.03

(b) English-Finnish

Table 4: BLEU scores different models

1. Translation performance against the complexity of the sentence measured using proxy indicators
such as the length of the sentence, the depth of the constiuency parse trees and the depth of the
dependency parse trees

2. We also use dependency tree induction as described in Section 3 as an analysis tool. We use the
encoder attention heads to induce trees for the training set of the CoNLL 2017 Shared Task (Zeman
et al., 2017), and compare unlabelled attachment scores (UAS) across layers and attention heads.
We use the gold word and sentence tokenization.

5.1.1 Performance over complexity

We group together sentences of the same length , sentences with the same depth and evaluate their BLEU
results. A bucket of size 1 was chosen to provide a holisitc view. One possible disadavantage with a fine
bucket size is the lack of examples per bucket. But as we can see, there were sufficient examples for most
of the buckets. Figure 3 shows the distribution of the sentences over the length of the sentences and the
depth of their parse trees.

Figure 3: Sentence complexity of the test sentences

We observe that the degradation of performance with increasing length, and depth of dependency or
constituency tree is similar in the case of base model and models we train on augmented data. We do
not observe better performance on more complex (longer, or deeper) sentences when we provide explicit
syntactic information. In interest of space, we leave the graphs showing variation in performance with
length to the appendix (7).
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5.1.2 Tree induction

For each model, we report the UAS F1 score achieved by the best performing attention head at each layer.
We see that for German, using constituency parses leads to less powerful syntactic representations, while
using only dependency parses brings it closer to the performance of the base model.

For Finnish, using both constituency and dependency parses works well in some layers, while using
either one results in largely similar performance.

Note that these UAS scores are far lower than what can be acieved by a dedicated parsing model,
and are presented here to help compare the syntactic information in the representations learned by the
models. Raganato and Tiedemann (2018) note that when given more data, Transformers tend to learn
better syntactic representations. We see that providing explicit syntactic information does not change this
trend, and in a lower resource setting, Transformers do no capture syntax as well as they do when trained
on large corpora.

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Base 20.68 15.96 14.66 18.87 20.67 7.08
Base + CP 5.05 3.88 4.27 5.97 4.83 6.22
Base + CP + DP 14.64 5.08 5.22 11 7.66 7.07
Base + DP 15.63 14.84 13.13 5.06 5.59 15.57

(a) Best performing attention heads for English-German

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Base 19.08 21.12 7.04 17.84 15.07 20
Base + CP 14.8 16.22 15.47 19.95 19.4 18.95
Base + CP + DP 17.73 13.67 20.31 8.62 16.07 14.5
Base + DP 14.14 17.94 14.9 19.97 17.47 7.37

(b) Best performing attention heads for English-Finnish

Table 5: UAS F1-scores on the dependency tree induction task on the CoNLL 2017 Shared Task English
data.

6 Conclusion

In this project, we explore two methods of augmenting the training data provided to a Transformer machine
translation model to improve the performance on smaller data sets. The first method involves training
Transformers as multi-task models that predict the linearized parse trees and translations to the target
language. The other method involves training the Transformer to generate the translation from either the
source sentence or its parse tree. We propose the use of linearized dependency trees as the additional data
for training the models.

We find that in this training regime, the use of explicit syntactic information does not improve the
performance of the Transformer models in a low-resource setting. Even further analysis to induce de-
pendency trees from attention heads shows that training with syntax data does not improve the encoder
representations learned by the models.

7 Future Work

We propose two possible avenues for future work. The first is training the multi-task model similar to
Subramanian et al. (2018). Our work explores a multi-task model that shares both the encoder and
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the decoder. However, using different decoders might allow the translation decoder to learn to generate
translations better, without having to learn another language.

Another possible question to explore is the use of gold parses as the explicit syntactic information
provided. The parses we use are generated by another model, and errors in parsing are likely to propogate
and get amplified. However, incorporating gold parses might help mitigate this issue.
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Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendonca,
Tatiana Lando, Rattima Nitisaroj, and Josie Li. Conll 2017 shared task: Multilingual parsing from raw
text to universal dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 1–19, Vancouver, Canada, August 2017. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/K/K17/K17-3001.pdf.

9

https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.24963/ijcai.2017/584
https://www.aclweb.org/anthology/P17-2021
https://www.aclweb.org/anthology/D18-1327
https://openreview.net/forum?id=B18WgG-CZ
https://doi.org/10.18653/v1/P17-4012
https://www.aclweb.org/anthology/W18-6319
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf


Appendix

Performance over Complexity Graphs
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Figure 4: Base Models performance over sentence complexities
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Figure 5: English-Finnish Multi-Task models performance over sentence complexities
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Figure 6: English-German Multi-Task models performance over sentence complexities
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Figure 7: English-Finnish Mixed-Encoder models performance over sentence complexities
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